isomorphic chains - определение. Что такое isomorphic chains
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое isomorphic chains - определение

Computably isomorphic

Alice in Chains discography         
WIKIMEDIA BAND DISCOGRAPHY
Alice in Chains Discography; Alice in chains discography; Aic discography; Alice in Chains music videos; Alice in Chains singles; Alice in Chains albums; AIC discography
The discography of Alice in Chains, a Seattle-based rock band, consists of six studio albums, three extended plays (EP), three live albums, five compilations, two DVDs, 44 music videos, and 32 singles (as of September 2019).
Chains (1949 film)         
1950 FILM BY RAFFAELLO MATARAZZO
Catene (1949 film); Chains (1949 film)
Catene (internationally released as Chains) is a 1949 Italian melodrama film directed by Raffaello Matarazzo. It had an impressive commercial success, being seen by 6 million people, one in eight Italians of the time, and was followed by a series of six other successful films directed by Matarazzo and featuring the couple Amedeo Nazzari and Yvonne Sanson.
Battleship Chains         
SONG WRITTEN BY TERRY ANDERSON
Battleship Chains (song); Battleship Chains (Volbeat song)
"Battleship Chains" is a song written by Terry Anderson and recorded by his band The Woods. It was covered and made famous by the band The Georgia Satellites in 1986.

Википедия

Computable isomorphism

In computability theory two sets A ; B N {\displaystyle A;B\subseteq \mathbb {N} } of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function f : N N {\displaystyle f\colon \mathbb {N} \to \mathbb {N} } with f ( A ) = B {\displaystyle f(A)=B} . By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility.

Two numberings ν {\displaystyle \nu } and μ {\displaystyle \mu } are called computably isomorphic if there exists a computable bijection f {\displaystyle f} so that ν = μ f {\displaystyle \nu =\mu \circ f}

Computably isomorphic numberings induce the same notion of computability on a set.